MHF Preprint Series

Kyushu University
21st Century COE Program
Development of Dynamic Mathematics with High Functionality

Stochastic analysis
and the KdV equation

S. Taniguchi

MHF 2006-30

(Received November 17, 2006)

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN
Stochastic analysis and the KdV equation

Setsuo Taniguchi

Dedicated to Professor Yoichiro Takahashi on the occasion of his 60th birthday

Abstract. N. Ikeda and the author established a mapping from a class of Gaussian measures parameterized by linear combinations of Dirac measures on \mathbb{R} to that of reflectionless potentials. The bijectivity of the mapping was shown by the author, and was extended to a class of more general Gaussian measures.

In this paper, a brief review on the bijection and its application to the KdV equation is given first. Next another application to the stochastic KdV equation is discussed. Finally presented is an alternative approach to the bijection via the linear filtering theory.

1. Introduction

Applications of stochastic analysis to the theory of partial differential equations (PDE in short) have their source in stochastic representations of solutions; let \mathcal{L}^V be a second order differential operator on \mathbb{R}^n of the form

$$\mathcal{L}^V = \frac{1}{2} \sum_{i,j=1}^{n} a^{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} b^i \frac{\partial}{\partial x_i} + V,$$

where a^{ij}, b^i, $1 \leq i, j \leq n$, and V are appropriately smooth functions from \mathbb{R}^n to \mathbb{R}. The solution $u = u(x, t)$ of the Cauchy problem of the PDE

$$\frac{\partial u}{\partial t} = \mathcal{L}^V u, \quad u(\cdot, 0) = f$$

is represented as

$$u(x, t) = \mathbb{E} \left[f(X(t, x)) \exp \left(\int_{0}^{t} V(X(s, x)) ds \right) \right],$$

where $\{X(t, x)\}_{t \geq 0}$ is the diffusion process stating from x at time 0, which is generated by \mathcal{L}^0, and \mathbb{E} stands for the expectation with respect to the underlying probability measure. This kind of expression goes back to the studies in 1940’s made...
by K. Itô [It], R. Cameron-W. Martin [CM], and M. Kac [Ka]. In this paper, we shall first give a review on such expressions for classical and generalized reflectionless potentials, and n-soliton solutions of the Korteweg-de Vries (KdV in short) equation

$$\frac{\partial v}{\partial t} = \frac{3}{2} v \frac{\partial v}{\partial x} + \frac{1}{4} \frac{\partial^3 v}{\partial x^3}.$$ (1.1)

Secondly, we shall apply our probabilistic expression to the stochastic KdV equation observed in [W]. Finally we shall give an alternative proof of the probabilistic expressions of reflectionless potentials by using the filtering theory.

The author is grateful to Professors Gui-Qiang Chen, Elton Hsu, and Mark Pinsky for the stimulating conference at the Northwestern University in June, 2005, and their hospitality.

2. Reflectionless potentials

Let

$$S = \{ \{\eta_j, m_j\}_{1 \leq j \leq n} \mid n \in \mathbb{N}, \eta_j, m_j > 0, \eta_i \neq \eta_j \text{ if } i \neq j \}. $$

A classical reflectionless potential $u_\mathbf{s}$ with scattering data $\mathbf{s} = \{\eta_j, m_j\}_{1 \leq j \leq n} \in S$ is by definition the function

$$u_\mathbf{s}(x) = -2 \frac{d^2}{dx^2} \log \det(I + G_\mathbf{s}(x))$$

where

$$G_\mathbf{s}(x) = \left(\frac{\sqrt{m_i m_j} e^{-(\eta_i + \eta_j)x}}{\eta_i + \eta_j} \right)_{1 \leq i, j \leq n}.$$

Applying the inverse scattering theory to the Schrödinger operator $-(d/dx)^2 + u_\mathbf{s}$, one can spell out the scattering data \mathbf{s} from $u_\mathbf{s}$. Thus we can identify the space

$$\Xi_0 = \{ u_\mathbf{s} \mid \mathbf{s} \in S \}$$

of all classical reflectionless potentials with S. We say that u is a generalized reflectionless potential if there exist $\mu > 0$ and $\{u_n\}_{n=1}^{\infty} \subset \Xi_0$ such that u_n converges to u uniformly on compacts and

$$\text{Spec} \left(-\frac{d^2}{dx^2} + u_n \right) \subset [-\mu, \infty), \quad n = 1, 2, \ldots,$$

where Spec$(-(d/dx)^2 + u_n)$ stands for the spectrum of $-(d/dx)^2 + u_n$. Let Ξ be the space of all generalized reflectionless potentials. The space Ξ was used by D. Lundina [L] and V. Marchenko [Ma2] to study the Cauchy problem of the KdV equation, and by S. Kotani [Ko1, Ko2] to construct the KdV-flow.

Let W be the space of all continuous functions $w : [0, \infty) \to \mathbb{R}$ with $w(0) = 0$. We denote by $\{X(x)\}_{x \geq 0}$ the coordinate mapping on W: $X(x) : W \ni w \mapsto X(x, w) = w(x) \in \mathbb{R}$. Let Σ be the space of all finite measures on \mathbb{R} with compact support. For $\sigma \in \Sigma$, P^σ denotes the probability measure on W under which $\{X(x)\}_{x \geq 0}$ is a centered Gaussian process with covariance function

$$\int_W X(x)X(y)dP^\sigma = \int_{\mathbb{R}} \frac{e^{\zeta(x+y)} - e^{\zeta|x-y|}}{2\zeta} \sigma(d\zeta).$$

Set

$$\mathcal{G} = \{ P^\sigma \mid \sigma \in \Sigma \}.$$
\[\frac{d}{dx} \int_W X(x)^2 dP^\sigma = \int_{\mathbb{R}} e^{2\xi x} \sigma(d\zeta), \]

we may and will identify \(\Sigma \) with \(\mathcal{G} \).

For \(P^\sigma \in \mathcal{G} \), we define \(\Phi_\sigma : [0, \infty) \to (0, \infty) \) by

\[\Phi_\sigma(x) = \int_W \exp \left(-\frac{1}{2} \int_0^x X(y)^2 dy \right) dP^\sigma, \quad x \geq 0. \]

Then \(\Phi_\sigma \in C^\infty([0, \infty)) \) (see [T2]), and hence we can define \(\psi : \mathcal{G} \to C([0, \infty)) \) by

\[\psi(P^\sigma)(x) = 4 \frac{d^2}{dx^2} \log \Phi_\sigma(x), \quad x \geq 0. \]

Put

\[\Sigma_0 = \left\{ \sigma = \sum_{j=1}^n c_j \delta_{p_j} \mid n \in \mathbb{N}, c_j > 0, p_j \in \mathbb{R}, j = 1, \ldots, n, p_j \neq p_i (i \neq j) \right\}. \]

For \(\sigma = \sum_{j=1}^n c_j^2 \delta_{p_j} \in \Sigma_0 \), we can construct \(P^\sigma \) by taking advantage of stochastic integrals. Namely, take an \(n \)-dimensional Brownian motion \(\{b(x)\}_{x \geq 0} \) on the probability space \((\Omega, \mathcal{F}, P)\). Representing elements of \(\mathbb{R}^n \) as column vectors, we define the \(\mathbb{R}^n \)-valued Ornstein-Uhlenbeck process \(\{\xi_\sigma(x)\}_{x \geq 0} \) and the \(\mathbb{R} \)-valued centered Gaussian process \(\{X_\sigma(x)\}_{x \geq 0} \) by

\[\xi_\sigma(x) = e^{xD_\sigma} \int_0^x e^{-yD_\sigma} db(y) \quad \text{and} \quad X_\sigma(x) = (c, \xi_\sigma(x)), \]

respectively, where \(D_\sigma = \text{diag}(p_j) \) (the diagonal matrix with \(p_1, \ldots, p_n \) being diagonal entries), \(e^A = \sum_{k=0}^\infty A^k/k! \) for \(n \times n \)-matrix \(A \), \(\langle \cdot, \cdot \rangle \) is the standard inner product in \(\mathbb{R}^n \), and \(c = (c_1, \ldots, c_n) \), the transposed vector of \((c_1, \ldots, c_n)\). It is easily seen that \(P^\sigma \) coincides with the induced measure \(P \circ X_\sigma^{-1} \) on \(\mathcal{W} \) through \(X_\sigma : \Omega \to \mathcal{W} \).

For \(\sigma = \sum_{j=1}^n c_j^2 \delta_{p_j} \in \Sigma_0 \), without loss of generality, we may and will assume that there exist \(m < n \) and \(1 \leq j(1) < \cdots < j(m) \leq n \) such that

\[|p_j| \leq |p_{j+1}|, \quad p_{j(i)} > 0, \quad p_{j(i)+1} = -p_{j(i)}, \quad \#\{|p_1|, \ldots, |p_n|\} = n - m. \]

Let \(0 < r_1 < \cdots < r_{n-m} \) be the roots of the algebraic equation

\[(2.1) \quad \sum_{j=1}^n \frac{c_j^2}{p_j^2 - r} = -1. \]

We define the mapping \(\overline{\psi} : \Sigma_0 \ni \sigma \mapsto \overline{\psi}(\sigma) = \{\eta_j, m_j\} \in \mathcal{S} \) by

\[\{\eta_1 < \cdots < \eta_n\} = \{p_{j(1)}, \ldots, p_{j(m)}, \sqrt{r_1}, \ldots, \sqrt{r_{n-m}}\} \]

and

\[(2.2) \quad m_i = \begin{cases} 2\eta_i^2 \frac{p_{j(i)+1}}{c_j^2} \prod_{k \neq i} \frac{\eta_k + \eta_i}{\eta_k - \eta_i} \prod_{k \neq j(i), j(i)+1} \frac{p_k + \eta_i}{p_k - \eta_i} & \text{if } i = j(i), \\ -2\eta_i \prod_{k \neq i} \frac{\eta_k + \eta_i}{\eta_k - \eta_i} \prod_{k=1}^n \frac{p_k + \eta_i}{p_k - \eta_i} & \text{otherwise}. \end{cases} \]
\[\psi \in \mathcal{G}_0 \text{ and } \mathcal{V}(\sigma) = \{\eta_j, m_j\}_{1 \leq j \leq n}.\]

(i) It holds that
\[
(2.3) \quad 4 \log \Phi_\sigma(x) = -2 \log \det \left(I + G_{\mathcal{V}(\sigma)}(x) \right) \\
+ 2 \log \det \left(I + G_{\mathcal{V}(\sigma)}(0) \right) - 2x \sum_{i=1}^{n} (p_i + \eta_i), \quad x \geq 0.
\]

(ii) \(\psi(\mathcal{G}_0) \subset \Xi_0\) and \(\psi(P^*) = u_{\mathcal{V}(\sigma)}\).

(iii) \(\psi : \mathcal{G}_0 \rightarrow \Xi_0\) is bijective.

The second assertion should be understood as follows. Due to the first assertion, one has that \(\psi(P^*) = u_{\mathcal{V}(\sigma)}\) on \([0, \infty)\). Being real analytic on \(\mathbb{R}\), \(u_{\mathcal{V}(\sigma)}\) is determined completely by \(\psi(P^*)\). In this sense, one thinks of \(\psi(P^*)\) as an element in \(\Xi_0\).

In the proof of (2.3) given in \([\text{IkT}]\), the change of variable formula on \(\mathcal{W}\), so called the Cameron-Martin formula, played a key role. In the next section, we shall give a new proof of the identity (2.3) by using the filtering theory.

To see the bijectivity described in the assertion (iii), it suffices to construct the inverse mapping of \(\mathcal{V}\). For this purpose, let \(u = u_s \in \Xi_0\) \((s \in \mathcal{S})\) and \(e^+(x; \zeta)\) be the right Jost solution of the Schrödinger operator \(\mathcal{L} = -(d/dx)^2 + u_s\):
\[\mathcal{L}e^+(\zeta; \zeta) = \zeta^2 e^+(\zeta; \zeta), \quad e^+(x; \zeta) \sim e^{\xi x} (x \to \infty).\]

Then, it is known ([L, Ma2]) that there are \(\lambda_j \in C^\infty(\mathbb{R}; \mathbb{R}), 1 \leq j \leq n\), such that
\[e^+(x; \zeta) = e^{\sqrt{-1} \zeta x} \prod_{j=1}^{n} \frac{\zeta - \sqrt{-1} \lambda_j(x)}{\zeta + \sqrt{-1} \eta_j} \quad \text{and} \quad \lambda_j' < 0, 1 \leq j \leq n.\]

If we set \(\kappa(s) = \sum_{j=1}^{n} (-\lambda_j'(0)) \delta_{\lambda_j(0)}\), then \(\kappa = -\mathcal{V}^{-1}\).

On account of the above observation on the Jost solution, one can give stochastic expressions on \((-\infty, 0]\):

Theorem 2.2 ([T2]). Let \(P^* \in \mathcal{G}_0\).

(i) If we define \(\mu \in \Xi_0\) by \(\mu(A) = \sigma(-A)\), \(A \in \mathcal{B}(\mathbb{R})\) \((= \text{the Borel field on } \mathbb{R})\), then
\[u_{\mathcal{V}(\sigma)}(x) = \psi(P^*)(-x) \quad \text{for } x \in (-\infty, 0].\]

(ii) For \(y \leq 0\), let \(b(y) = b(-y)\). Define
\[\xi_\sigma(y) = -e^{y D^*} \int_{y}^{0} e^{-z D^*} db(z), \quad X_\sigma(y) = \langle c, \xi_\sigma(y) \rangle.\]

Then \(u = \psi(P^*)\) is represented as
\[u(x) = 4 \frac{d^2}{dx^2} \log \left(\int_{\Omega} \exp \left(-\frac{1}{2} \int_{\max\{0, x\}}^{\max\{0, x\}} X_\sigma(y)^2 dy \right) dP \right) \quad \text{for every } x \in \mathbb{R}.\]

The above bijectivity extends to that between \(\mathcal{G}\) and \(\Xi\):

Theorem 2.3 ([T2]). (i) Let \(\sigma_n \in \Xi_0\), \(n = 1, 2, \ldots\), and \(\sigma \in \Sigma\). Assume that \(\sigma_n\) converges to \(\sigma\) vaguely as \(n \to \infty\) and \(\bigcup_{n \in \mathbb{N}} \text{supp } \sigma_n \subset [-\beta, \beta]\) for some \(\beta > 0\). Then \(\psi(P^*)\) tends to \(\psi(P^*)\) uniformly on compacts in \([0, \infty)\) as \(n \to \infty\). Moreover, for each \(\varepsilon > 0\), there exists \(n_0 \in \mathbb{N}\) such that
\[\bigcup_{n \geq n_0} \text{Spec } \left(\frac{d^2}{dx^2} + \psi(P^*) \right) \subset [-\beta^2 - \sigma(\mathbb{R}) - \varepsilon, \infty).\]
(ii) Let \(\sigma \in \Sigma \), and define \(\mu \in \Sigma \) by \(\mu(A) = \sigma(-A), A \in \mathcal{B}(\mathbb{R}) \). Set
\[
 u(x) = \begin{cases}
 \psi(P^n)(x), & x \geq 0, \\
 \psi(P^n)(-x), & x \leq 0.
\end{cases}
\]
Then \(u \in \Xi \). Conversely every \(u \in \Xi \) is of the above form.

For \(\sigma \in \Sigma \), \(\sigma_n \)'s constructed as follows satisfy the conditions described in (i);
\[
 \sigma_n = \sum_{j=-n}^{n} \left(\sigma(\lfloor j/\beta \rfloor, (j+1)/\beta) + \frac{1}{n} \right) \delta_{j,\beta/n},
\]
where \(\beta > 0 \) has been chosen so that \(\text{supp} \sigma \subset [-\beta, \beta] \).

3. The KdV equation

As is well known ([MiJD]), soliton solutions of the KdV equation and the \(\tau \)-function of the KdV hierarchy are of the same form as classical reflectionless potential. Namely, the \(\tau \)-function of the KdV hierarchy is given by
\[
 \tau(x, t) = \det(I + A(x, t))
\]
where \(x \in \mathbb{R}, t = (t_1, t_2, \ldots) \in \mathbb{R}^N \) satisfies that \(\#\{t_j \neq 0\} < \infty, \{\eta_j, m_j\} \in \mathcal{S} \),
\[
 \zeta(x, t) = x\eta + \sum_{\alpha=1}^{\infty} t_\alpha \eta_\alpha^{2\alpha+1},
\]
and
\[
 A(x, t) = \left(\frac{\eta_j + \eta_i}{\eta_j - \eta_i} e^{-\zeta(x, t) + \zeta(x, t)} \right)_{1 \leq i, j \leq n}.
\]
If \(t = (0, \ldots) \), then \(v(x, t) = 2(\partial \partial x)^2 \log \tau(x, t) \) is a soliton solution of the KdV equation (1.1) ([MiJD]).

As was seen in [IkT], we also give a stochastic expression of the \(\tau \)-function. To recall this, let \(\sigma \in \Sigma_j \) and \(\psi(\sigma) = \{\eta_j, m_j\} \in \mathcal{S} \). If we denote by \(R \) the diagonal matrix \(\text{diag}[\eta_j] \) with \(\eta_j \)'s being the diagonal entries, then there exists \(U \in \mathcal{O}(n) \) such that \(D_\sigma^2 + c \otimes c = UR^2U^{-1} \), where \(c \otimes c = (c_i c_j)_{1 \leq i, j \leq n}^\sigma \). Set \(\zeta(x, t) = \text{diag}[\zeta_j(x, t)] \), and define the \(n \times n \)-matrix \(\phi(x, t) \) by
\[
 \phi(x, t) = U \left\{ \cosh(\zeta(x, t)) - \sinh(\zeta(x, t)) R^{-1} U^{-1} D_\sigma U \right\} U^{-1}.
\]
Then, for every \((x, t) \), \(\det \phi(x, t) \neq 0 \) and one can define the \(n \times n \)-matrix \(\beta_k(x) \) by
\[
 \beta_k(x) = -\frac{\partial \phi}{\partial x}(x, t) \phi^{-1}(x, t).
\]
Set
\[
 I_\sigma(x, t) = \int_{\Omega} \exp \left(-\frac{1}{2} \int_0^x X_\sigma(y)^2dy + \frac{1}{2} \left(\langle \beta_k(0) - D_\sigma \rangle \zeta_\sigma(x), \zeta_\sigma(x) \right) \right) dP.
\]
We then have that

Theorem 3.1 ([IkT]). (i) It holds that
\[
 \log I_\sigma(x, t) = -\frac{1}{2} \log \tau(x, t) + \frac{1}{2} \log \tau(0, t) - \frac{x}{2} \sum_{i=1}^{n} (p_i + \eta_i).
\]
(ii) If \(t = (t, 0, \ldots) \), then the function
\[
 v_\sigma(x, t) = -4 \left(\frac{\partial}{\partial x} \right)^2 \log I_\sigma(x, t)
\]
SETSUO TANIGUCHI

is an n-soliton solution of the KdV equation (1.1).

We next consider the stochastic KdV equation dealt with in [W]:

\[d_t v - \left\{ \frac{3}{2} v \frac{\partial v}{\partial x} + \frac{1}{4} \frac{\partial^3 v}{\partial x^3} \right\} dt = a dW(t), \]

where \(a \in \mathbb{R} \) and \(\{ W(t) \}_{t \geq 0} \) is a 1-dimensional Brownian motion which is independent of \(\{ b(x) \}_{x \geq 0} \). For \(t \geq 0 \), let \(t = (t, 0, \ldots) \) and write \((x, t) \) and \(\beta_t(x) \) for \(A(x, t) \) and \(\beta_t(x) \). Define

\[
I_\sigma(x, t; W) = \int_{\Omega} \exp \left(-\frac{1}{2} \int_0^x X_\sigma(y)^2 dy \right) \left(\frac{1}{2} \left\{ \beta_t \left(-\frac{3a}{2} \int_0^t W(u) du \right) - D_\sigma \right\} \xi_\sigma(x), \xi_\sigma(x) \right) \right) dP.
\]

Then we have that

Theorem 3.2. The function given by

\[v(x, t; W) = aW(t) - 4 \left(\frac{\partial}{\partial x} \right)^2 \log I_\sigma(x, t; W) \]

is a solution of the stochastic KdV equation (3.1).

Proof. In repetition of the argument in [IkT], we have that

\[
\log \left(\int_\Omega \exp \left(-\frac{1}{2} \int_0^x X_\sigma(y)^2 dy + \frac{1}{2} \left\{ [\beta_t(x_0) - D_\sigma] \xi_\sigma(x), \xi_\sigma(x) \right\} \right) dP \right)
\]

\[= -\frac{1}{2} \log \det (I + A(x + x_0, t)) + \frac{1}{2} \log \det (I + A(x_0, t)) - \frac{x}{2} \sum_{i=1}^n (p_i + \eta_i) \]

for any \(x_0 \in \mathbb{R} \). While the stochastic KdV equation dealt with by Wadati [W] was of the form

\[d_t v - \left\{ 6v \frac{\partial v}{\partial x} - \frac{\partial^3 v}{\partial x^3} \right\} dt = dW(t), \]

after the standard change of variables, his result is rewritten in our setting as follows; the function

\[v(x, t; W) = aW(t) + 2 \left(\frac{\partial}{\partial x} \right)^2 \log \left(\det \left(I + A \left(x - \frac{3a}{2} \int_0^t W(u) du, t \right) \right) \right) \]

solves the stochastic KdV equation (3.1). Combining this with (3.2), we arrive at the desired assertion.

\[\square \]

4. The filtering theory

The results in the previous sections, which connects the Gaussian measures and reflectionless potentials and the KdV equation, start from the identity (2.3). In [IkT], the identity was shown by using the Cameron-Martin formula on the Wiener space. In this section, we first give an alternative proof of (2.3) with the help of the linear filtering theory. Secondly we investigate \(\Phi_\sigma \) from the Gaussian filtering theoretical point of view to revisit the Marchenko formula.
4.1. Proof of (2.3) via the linear filtering theory. Let $\sigma = \sum_{j=1}^{n} c_{ij} \delta_{pj} \in \Sigma_0$. Throughout this subsection, we assume that

$$|p_1| < \cdots < |p_n|.$$

The general case follows from this one in the standard limiting procedure as was seen in [KlT]. Let $(b(x))_{x \geq 0}$ be an n-dimensional Brownian motion on a filtered probability space $(\Omega, \mathcal{F}, P, \mathbb{F}_x)_{x \geq 0}$, and define $\{\xi_\sigma(x) = \{\xi^1_\sigma(x), \ldots, \xi^p_\sigma(x)\}_{x \geq 0}$ and $\{X_\sigma(x)\}_{x \geq 0}$ as in Section 2.

Take a 1-dimensional Brownian motion $\{N(x)\}_{x \geq 0}$ with $N(0) = 0$, which is independent of $(b(x))_{x \geq 0}$, and set

$$Z_\sigma(x) = \int_0^x X_\sigma(y)dy + N(x),$$

where 0 denotes the unit matrix. See [KlT] and [KlB] that

$$\int_\Omega \exp \left(-\frac{1}{2} \int_0^x X_\sigma(y)^2dy \right) dP = \exp \left(-\frac{1}{2} \int_0^x S_\sigma(y)dy \right).$$

Combined with the definition of $X_\sigma(x)$, this implies that

$$(4.1) \quad \log \left(\int_\Omega \exp \left(-\frac{1}{2} \int_0^x X_\sigma(y)^2dy \right) dP \right) = -\frac{1}{2} \int_0^x \sum_{i,j=1}^n c_{ij} P_{ij}(y) dy,$$

where

$$P_{ij}(y) = \int_\Omega (\xi^i_\sigma(y) - \hat{\xi}^i_\sigma(y))(\xi^j_\sigma(y) - \hat{\xi}^j_\sigma(y)) dP.$$

Since the $n \times n$-matrix valued function $P = (P_{ij})$ is the error matrix of the linear filtering problem

$$\begin{align*}
\text{d}\xi_\sigma(x) &= D_\sigma \xi_\sigma(x) dx + db(x) \quad \text{(system)}, \\
\text{d}Z_\sigma(x) &= (c, \xi_\sigma(x)) dx + dN(x) \quad \text{(observation)},
\end{align*}$$

it obeys the ordinary differential equation

$$\frac{\text{d}P}{\text{d}x}(x) = D_\sigma P(x) + P(x) D_\sigma - P(x) (c \otimes c) P(x) + I, \quad P(0) = 0,$$

where I denotes the $n \times n$ unit matrix. See [BJ]. Thus, what is needed to show (2.3) is a precise expression of $\sum_{i,j=1}^n c_{ij} P_{ij}(x)$.

Put

$$H = \begin{pmatrix} -D_\sigma & c \otimes c \\ I & D_\sigma \end{pmatrix}, \quad \left(\begin{array}{c} U_0(x) \\ V_0(x) \end{array} \right) = \exp(xH) \left(\begin{array}{c} I \\ 0 \end{array} \right),$$

where 0 denotes the $n \times n$ zero matrix. Since

$$\langle U_0(x)v, V_0(x)v \rangle = \int_0^x \{ |U_0(y)v|^2 + \langle c, V_0(y)v \rangle \} dy, \quad v \in \mathbb{R}^n,$$

we see that $\det U_0(x) \neq 0$ for any $x \geq 0$. It is then easily checked that

$$(4.3) \quad P(x) = V_0(x)U_0(x)^{-1}.$$
Let $0 < r_1 < \cdots < r_n$ be the roots of (2.1), and set $\eta_j = \sqrt{r_j}$. Define $n \times n$-matrices A, B, C and $(2n) \times (2n)$-matrix S by

$$A = ((D_\sigma + \eta_j)^{-1}c)_{1 \leq j \leq n}, \quad B = ((D_\sigma - \eta_j)^{-1}c)_{1 \leq j \leq n},$$

$$C = ((D_\sigma^2 - r_j)^{-1}c)_{1 \leq j \leq n}, \quad S = \begin{pmatrix} A & B \\ C & C \end{pmatrix}.$$

Then $\det S \neq 0$ and it holds that

$$H = S \begin{pmatrix} R & 0 \\ 0 & -R \end{pmatrix} S^{-1}.$$

Since

$$S = \begin{pmatrix} A - B & B \\ 0 & C \end{pmatrix} \begin{pmatrix} I & 0 \\ I & 1 \end{pmatrix},$$

$\det(A - B) \neq 0$ and $\det C \neq 0$. We then have that

$$\exp(xH) = \begin{pmatrix} Ae^{xR} & Be^{xR} \\ Ce^{xR} & Ce^{xR} \end{pmatrix} = \begin{pmatrix} (A - B)^{-1} & -(A - B)^{-1}BC^{-1} \\ -(A - B)^{-1} & (A - B)^{-1}BC^{-1} + C^{-1} \end{pmatrix}.$$

Due to (4.3), this implies that

$$P(x) = C(e^{xR} - e^{-xR}) \{ Ae^{xR} - Be^{-xR} \}^{-1}.$$

Define $n \times n$-matrices X, Y, Z by

$$X = \left(\frac{1}{p_i + \eta_j} \right)_{1 \leq i, j \leq n}, \quad Y = \left(\frac{1}{p_i - \eta_j} \right)_{1 \leq i, j \leq n}, \quad Z = \left(\frac{1}{p_i^2 - r_j} \right)_{1 \leq i, j \leq n}.$$

Since $A = \text{diag}[c_j]X$, $B = \text{diag}[c_j]Y$, $C = -\text{diag}[c_j]Z$, we obtain that

$$P(x) = -\text{diag}[c_j]Z \{ e^{xR} - e^{-xR} \} \{ Xe^{xR} - Ye^{-xR} \}^{-1} \text{diag}[1/c_j].$$

In conjunction with the definition of r_k’s, this yields that

$$\sum_{i,j=1}^{n} c_i c_j P_{ij}(x) = \sum_{i,j=1}^{n} Q_{ij}(x),$$

where

$$Q(x) = (I - e^{-2xR}) \{ X - Ye^{-2xR} \}^{-1}.$$

In the sequel, we compute $\sum_{i,j=1}^{n} Q_{ij}(x)$ algebraically, and do not use the dependence of η_j’s on p_i’s. Hence, in what follows we only assume that $p_i \neq p_j$ and $\eta_i \neq \eta_j$ if $i \neq j$, $\eta_j > 0$, $1 \leq j \leq n$, and $\{p_1, \ldots, p_n\} \cap \{\eta_1, \ldots, \eta_n\} = \emptyset$. Define $m_i > 0$ by (2.2);

$$m_i = -2p_i \prod_{k \neq i} \frac{\eta_k + \eta_i}{\eta_k - \eta_i} \prod_{k=1}^{n} \frac{p_k + \eta_i}{p_k - \eta_i}.$$

If we set $T(\zeta) = X - Y \text{diag}[\zeta_1^2, \ldots, \zeta_n^2]$, $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{R}^n$, then

$$T(t(e^{-x\eta_1}, \ldots, e^{-x\eta_n})) = X - Ye^{-2xR}$$

and

$$\det T(\zeta) = \det X + \sum_{p=1}^{n} \sum_{1 \leq j_1 < \cdots < j_p \leq n} (\det X_{j_1 \cdots j_p}) \zeta_{j_1}^2 \cdots \zeta_{j_p}^2.$$
where $X_{j_1...j_p}$ is the matrix obtained by replacing all j_k-th column, $1 \leq k \leq p$, of X by $t(−1/(p_k + η_{kJ}))_{1\leq j \leq n}, 1 \leq k \leq p$, respectively. Due to Cauchy’s identity

$$\det \left[\frac{1}{α_i + β_j} \right]_{1 \leq i,j \leq n} = \prod_{1 \leq i < j \leq n} (α_i - α_j)(β_i - β_j) \prod_{i,j=1}^{n} (α_i + β_j),$$

we obtain that

$$\det X_{j_1...j_p} = \prod_{k=1}^{p} \frac{m_{j_k}}{2η_{j_k}} \prod_{1 \leq j < k \leq p} (η_{j_k} - η_{j_l})^2 \times \det X.$$

Since

$$\det(I + G_n(x))$$

$$= 1 + \sum_{p=1}^{n} \sum_{1 \leq j_1 < ... < j_p \leq n} \prod_{j=1}^{p} \frac{m_{j_j}}{2η_{j_j}} \prod_{1 \leq j < k \leq p} (η_{j_k} - η_{j_l})^2 \exp\left(-2\sum_{j=1}^{p} η_{j_j}\right),$$

we have that

$$\det(X - Ye^{−2xR}) = \det X \cdot \det(I + G_n(x)).$$

Denote by $\tilde{T}(ζ)$ the cofactor matrix of $T(ζ)$, and set $\tilde{Q}(ζ) = (I - \text{diag}(ζ^2))\tilde{T}(ζ)$. It then holds that

$$Q(x) = \frac{1}{\det T(ζ)} \tilde{Q}(ζ) \bigg|_{ζ = (e^{−x_{\eta_1}},...,e^{−x_{\eta_n}})}.$$

If we use $T_{<i>}(ζ)$ to indicate the matrix obtained by replacing the i-th line of $T(ζ)$ by $(1 − ζ_1^2, ..., 1 − ζ_n^2)$, then it holds that

$$\sum_{k,i=1}^{n} \tilde{Q}_{ki}(ζ) = \sum_{k,i=1}^{n} (1 − ζ_k^2)\tilde{T}_{ki}(ζ) = \sum_{i=1}^{n} \det T_{<i>}(ζ).$$

Since $\lim_{p_i \to \infty} p_i T_{ik}(ζ) = 1 − ζ_k^2, 1 \leq k \leq n$, we observe that

$$\det T_{<i>}(ζ) = \lim_{p_i \to \infty} p_i \det T(ζ) = \sum_{p=0}^{n} \sum_{1 \leq j_1 < ... < j_p \leq n} (\det X_{j_1...j_p;i})ζ_{j_1}^2 ... ζ_{j_p}^2,$$

where $X_{j_1...j_p;i} = (X_{j_1...j_p;i})_{k \leq k \leq n}$ is given by

$$(X_{j_1...j_p;i})_{k,ℓ} = \begin{cases} 1/(p_k + η_{ℓ}), & k \neq i, ℓ \notin \{j_1, ..., j_p\}, \\ -1/(p_k - η_{ℓ}), & k \neq i, ℓ \in \{j_1, ..., j_p\}, \\ 1, & k = i, ℓ \notin \{j_1, ..., j_p\}, \\ -1, & k = i, ℓ \in \{j_1, ..., j_p\}. \end{cases}$$

In the above expression, for $p = 0$, $ζ_{j_1}^2 ... ζ_{j_p}^2 = 1$ and the summation $\sum_{1 \leq j_1 < ... < j_p \leq n}$ is just one term determined as $\{j_1, ..., j_p\} = \emptyset$. Thus we obtain that

$$\sum_{i,j=1}^{n} \tilde{Q}_{ij}(ζ) = \sum_{p=0}^{n} \sum_{1 \leq j_1 < ... < j_p \leq n} \left(\sum_{i=1}^{n} \det X_{j_1...j_p;i} \right)ζ_{j_1}^2 ... ζ_{j_p}^2.$$

For $K = \left(\frac{1}{α_i + β_j} \right)_{1 \leq i,j \leq n}$
and its cofactor matrix \tilde{K}, it holds that
\[
\sum_{i,j=1}^{n} \tilde{K}_{ij} = \det K \sum_{i=1}^{n} (\alpha_i + \beta_i).
\]
Hence if we set
\[
(X'_{j_1 \cdots j_p})_{k\ell} = \begin{cases}
\frac{1}{p_k + \eta_\ell}, & \ell \notin \{j_1, \ldots, j_p\} \\
\frac{1}{p_k - \eta_\ell}, & \ell \in \{j_1, \ldots, j_p\}
\end{cases}
\]
and denote by $X'_{j_1 \cdots j_p}$ the cofactor matrix of $X'_{j_1 \cdots j_p}$, then, by (4.5), we have that
\[
\sum_{i=1}^{n} \det X_{j_1 \cdots j_p,i} = (-1)^p \sum_{k,\ell=1}^{n} (X'_{j_1 \cdots j_p})_{k\ell}
\]
\[
= (-1)^p \left\{ A - 2 \sum_{k=1}^{p} \eta_jk \right\} \det X'_{j_1 \cdots j_p} = \left\{ A - 2 \sum_{k=1}^{p} \eta_jk \right\} \det X_{j_1 \cdots j_p}
\]
\[
= \left\{ A - 2 \sum_{k=1}^{p} \eta_jk \right\} \det X \prod_{k=1}^{p} \frac{m_{jk}}{2\eta_jk} \prod_{1 \leq k < \ell \leq p} \left(\frac{\eta_jk - \eta_j\ell}{\eta_jk + \eta_j\ell} \right)^2,
\]
where $A = \sum_{i=1}^{n} (p_i + \eta_i)$. Plugging this into (4.9), we obtain that
\[
\sum_{i,j=1}^{n} \tilde{Q}_{ij}(\xi) = \det X \left\{ A + \sum_{p=1}^{n} \sum_{1 \leq j_1 < \cdots < j_p \leq n} \left\{ A - 2 \sum_{k=1}^{p} \eta_jk \right\} \times \prod_{k=1}^{p} \frac{m_{jk}}{2\eta_jk} \prod_{1 \leq k < \ell \leq p} \left(\frac{\eta_jk - \eta_j\ell}{\eta_jk + \eta_j\ell} \right)^2 \right\}.
\]
Combining this with (4.6), (4.7) and (4.8), we arrive at
\[
\sum_{i,j=1}^{n} Q_{ij}(x) = \sum_{i=1}^{n} (p_i + \eta_i) + \frac{d}{dx} \log \det (I + G_s(x)).
\]
From this, (4.1) and (4.4), the identity (2.3) follows.

4.2. The Gaussian filtering theory. In this subsection, we give a probabilistic interpretation of the Marchenko formula ([Ma1]) in the inverse scattering theory through the Gaussian filtering theory.

We start with recalling the Gaussian filtering theory. Let $u \in \Xi$ and, as an application of Theorem 2.3, take $P^\sigma \in \mathcal{G}$ so that $u = \psi(P^\sigma)$ on $[0, \infty)$. Let $\Omega = W \times W$, and define the probability measure $P = P^\sigma \times P^\mathcal{B}$ on Ω. Notice that $P^\mathcal{B}$ is the Wiener measure on W. Denote by $\{(X(x), N(x))\}_{x \geq 0}$ the coordinate mapping of Ω: $X(x, w) = w^1(x)$, $N(x, w) = w^2(x)$ for $w = (w^1, w^2) \in \Omega$. Define
\[
Z(x) = \int_{0}^{x} X(y)dy + N(x), \quad x \geq 0.
\]
Set $Z_x = \sigma[Z(y) : y \leq x]$, $\tilde{X}(x) = \mathbb{E}[X(x)|Z_x]$, and
\[
S(x) = \int_{\Omega} (X(x) - \tilde{X}(x))^2 dP.
\]
Let $K(x, y)$ be the unique Volterra kernel solving the Wiener-Hopf type equation

$$K(x, y) + \int_0^x K(x, z)R_\sigma(z, y)dz = R_\sigma(x, y),$$

where $R_\sigma(x, y) = \int W X(x)X(y)dP_\sigma$, and $L(x, y)$ be the unique Volterra kernel to the resolvent equation

$$L(x, y) - K(x, y) - \int_y^x K(x, z)L(z, y)dz = 0.$$

Then it holds that

$$L(x, y) = \begin{cases} \int_\Omega X(x)(X(y) - \bar{X}(y))dP, & x \geq y, \\ 0, & x < y, \end{cases}$$

and

$$S(x) = L(x, x) = K(x, x).$$

It was shown by Kleptsyna-Le Breton [KIB] that

$$\int_\Omega \exp\left(-\frac{1}{2} \int_0^x X(y)^2dy\right) dP = \exp\left(-\frac{1}{2} \int_0^x S(y)dy\right).$$

Hence we have that

$$u(x) = \psi(P_\sigma)(x) = 2 \frac{d}{dx}(-K(x, x)), \quad x \geq 0.$$

This identity is exactly the Marchenko formula in the inverse scattering theory ([Ma1]). Thus we have revisited the Marchenko formula via the stochastic calculus.

References

Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
E-mail address: taniguch@math.kyushu-u.ac.jp
MHF2005-1 Hideki KOSAKI
Matrix trace inequalities related to uncertainty principle

MHF2005-2 Masahisa TABATA
Discrepancy between theory and real computation on the stability of some finite element schemes

MHF2005-3 Yuko ARAKI & Sadanori KONISHI
Functional regression modeling via regularized basis expansions and model selection

MHF2005-4 Yuko ARAKI & Sadanori KONISHI
Functional discriminant analysis via regularized basis expansions

MHF2005-5 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Point configurations, Cremona transformations and the elliptic difference Painlevé equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA & Yasuhiko YAMADA
Construction of hypergeometric solutions to the q-Painlevé equations

MHF2005-7 Hiroki MASUDA
Simple estimators for non-linear Markovian trend from sampled data: I. ergodic cases

MHF2005-8 Hiroki MASUDA & Nakahiro YOSHIDA
Edgeworth expansion for a class of Ornstein-Uhlenbeck-based models

MHF2005-9 Masayuki UCHIDA
Approximate martingale estimating functions under small perturbations of dynamical systems

MHF2005-10 Ryo MATSUZAKI & Masayuki UCHIDA
One-step estimators for diffusion processes with small dispersion parameters from discrete observations

MHF2005-11 Junichi MATSUKUBO, Ryo MATSUZAKI & Masayuki UCHIDA
Estimation for a discretely observed small diffusion process with a linear drift

MHF2005-12 Masayuki UCHIDA & Nakahiro YOSHIDA
AIC for ergodic diffusion processes from discrete observations
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHF2005-13</td>
<td>Hiromichi GOTO & Kenji KAJIWARA</td>
<td>Generating function related to the Okamoto polynomials for the Painlevé IV equation</td>
</tr>
<tr>
<td>MHF2005-14</td>
<td>Masato KIMURA & Shin-ichi NAGATA</td>
<td>Precise asymptotic behaviour of the first eigenvalue of Sturm-Liouville problems with large drift</td>
</tr>
<tr>
<td>MHF2005-15</td>
<td>Daisuke TAGAMI & Masahisa TABATA</td>
<td>Numerical computations of a melting glass convection in the furnace</td>
</tr>
<tr>
<td>MHF2005-16</td>
<td>Raimundas VIDUNAS</td>
<td>Normalized Leonard pairs and Askey-Wilson relations</td>
</tr>
<tr>
<td>MHF2005-17</td>
<td>Raimundas VIDUNAS</td>
<td>Askey-Wilson relations and Leonard pairs</td>
</tr>
<tr>
<td>MHF2005-18</td>
<td>Kenji KAJIWARA & Atsushi MUKAIHIRA</td>
<td>Soliton solutions for the non-autonomous discrete-time Toda lattice equation</td>
</tr>
<tr>
<td>MHF2005-19</td>
<td>Yuu HARIYA</td>
<td>Construction of Gibbs measures for 1-dimensional continuum fields</td>
</tr>
<tr>
<td>MHF2005-20</td>
<td>Yuu HARIYA</td>
<td>Integration by parts formulae for the Wiener measure restricted to subsets in (\mathbb{R}^d)</td>
</tr>
<tr>
<td>MHF2005-21</td>
<td>Yuu HARIYA</td>
<td>A time-change approach to Kotani’s extension of Yor’s formula</td>
</tr>
<tr>
<td>MHF2005-22</td>
<td>Tadahisa FUNAKI, Yuu HARIYA & Mark YOR</td>
<td>Wiener integrals for centered powers of Bessel processes, I</td>
</tr>
<tr>
<td>MHF2005-23</td>
<td>Masahisa TABATA & Satoshi KAIZU</td>
<td>Finite element schemes for two-fluids flow problems</td>
</tr>
<tr>
<td>MHF2005-24</td>
<td>Ken-ichi MARUNO & Yasuhiro OHTA</td>
<td>Determinant form of dark soliton solutions of the discrete nonlinear Schrödinger equation</td>
</tr>
<tr>
<td>MHF2005-25</td>
<td>Alexander V. KITAEV & Raimundas VIDUNAS</td>
<td>Quadratic transformations of the sixth Painlevé equation</td>
</tr>
<tr>
<td>MHF2005-26</td>
<td>Toru FUJII & Sadanori KONISHI</td>
<td>Nonlinear regression modeling via regularized wavelets and smoothing parameter selection</td>
</tr>
<tr>
<td>MHF2005-27</td>
<td>Shuichi INOKUCHI, Kazumasa HONDA, Hyen Yeal LEE, Tatsuro SATO, Yoshihiro MIZOGUCHI & Yasuo KAWAHARA</td>
<td>On reversible cellular automata with finite cell array</td>
</tr>
</tbody>
</table>
MHF2005-28 Toru KOMATSU
Cyclic cubic field with explicit Artin symbols

MHF2005-29 Mitsuhiro T. NAKAO, Kouji HASHIMOTO & Kaori NAGATOU
A computational approach to constructive a priori and a posteriori error estimates for finite element approximations of bi-harmonic problems

MHF2005-30 Kaori NAGATOU, Kouji HASHIMOTO & Mitsuhiro T. NAKAO
Numerical verification of stationary solutions for Navier-Stokes problems

MHF2005-31 Hidefumi KAWASAKI
A duality theorem for a three-phase partition problem

MHF2005-32 Hidefumi KAWASAKI
A duality theorem based on triangles separating three convex sets

MHF2005-33 Takeaki FUCHIKAMI & Hidefumi KAWASAKI
An explicit formula of the Shapley value for a cooperative game induced from the conjugate point

MHF2005-34 Hideki MURAKAWA
A regularization of a reaction-diffusion system approximation to the two-phase Stefan problem

MHF2006-1 Masahisa TABATA
Numerical simulation of Rayleigh-Taylor problems by an energy-stable finite element scheme

MHF2006-2 Ken-ichi MARUNO & G R W QUISPEL
Construction of integrals of higher-order mappings

MHF2006-3 Setsuo TANIGUCHI
On the Jacobi field approach to stochastic oscillatory integrals with quadratic phase function

MHF2006-4 Kouji HASHIMOTO, Kaori NAGATOU & Mitsuhiro T. NAKAO
A computational approach to constructive a priori error estimate for finite element approximations of bi-harmonic problems in nonconvex polygonal domains

MHF2006-5 Hidefumi KAWASAKI
A duality theory based on triangular cylinders separating three convex sets in \mathbb{R}^n

MHF2006-6 Raimundas VIDŪNAS
Uniform convergence of hypergeometric series

MHF2006-7 Yuji KODAMA & Ken-ichi MARUNO
N-Soliton solutions to the DKP equation and Weyl group actions
Potentially generic polynomial

Generic sextic polynomial related to the subfield problem of a cubic polynomial

Exact cubature for a class of functions of maximum effective dimension

On high-discrepancy sequences

Detecting persistent regimes in the North Atlantic Oscillation time series

Tamely Eisenstein field with prime power discriminant

Generating function associated with the Hankel determinant formula for the solutions of the Painlevé IV equation

Darboux evaluations of algebraic Gauss hypergeometric functions

New mathematical approach to the energy release rate in crack extension

Arithmetic of the splitting field of Alexander polynomial

Likelihood estimation of stable Lévy processes from discrete data

Essential self-adjointness of Dirichlet operators on a path space with Gibbs measures via an SPDE approach

Energy stable finite element schemes and their applications to two-fluid flow problems

Asymptotic expansions for the Laplace approximations for Itô functionals of Brownian rough paths

Resolvent estimates for the linearized compressible Navier-Stokes equation in an infinite layer
MHF2006-23 Yoshiyuki KAGEI
Asymptotic behavior of the semigroup associated with the linearized compressible Navier-Stokes equation in an infinite layer

MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI & Mitsuhiko FUJIO
The number of orbits of box-ball systems

MHF2006-25 Toru FUJII & Sadanori KONISHI
Multi-class Logistic Discrimination via Wavelet-based Functionalization and Model Selection Criteria

MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA & Nicholas S. WITTE
Hypergeometric Solutions to the q-Painlevé Equation of Type $(A_1 + A_1')^{(1)}$

MHF2006-27 Hiroshi KAWABI & Tomohiro MIYOKAWA
The Littlewood-Paley-Stein inequality for diffusion processes on general metric spaces

MHF2006-28 Hiroki MASUDA
Notes on estimating inverse-Gaussian and gamma subordinators under high-frequency sampling

MHF2006-29 Setsuo TANIGUCHI
The heat semigroup and kernel associated with certain non-commutative harmonic oscillators

MHF2006-30 Setsuo TANIGUCHI
Stochastic analysis and the KdV equation