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A B S T R A C T

Yu and Hoff constructed novel confidence intervals for the treatment means in a one-way layout.
They assessed the expected lengths of these intervals using a semi-Bayesian analysis. We provide
a revealing assessment of these expected lengths using a fully frequentist analysis.

1. Introduction

Suppose that we wish to find a confidence interval, with specified coverage probability, for a scalar parameter of interest. Also
suppose that we have a pivotal quantity that is a continuous random variable. A confidence interval can be constructed, using
this pivotal quantity, in the usual way. Now suppose that we have some prior belief, though not certainty, that this parameter
takes values in some given set. This motivates us to construct a confidence interval, with the desired coverage probability, for this
parameter that has relatively small expected length when the parameter belongs to this given set, possibly at the expense of having
a relatively large expected length for other parameter values.

An easily-understood method for constructing a non-standard confidence interval, with the desired coverage probability, is
the ‘‘tail method’’ using the pivotal quantity. It turns out that, by the appropriate choice of the ‘‘tail function’’, this confi-
dence interval can be made to have relatively small expected length when the parameter of interest belongs to the given set
(Stein, 1962; Bartholomew, 1971; Puza and O’Neill, 2006ab; Puza and Yang, 2016; Yang and Puza, 2020; Yu and Hoff, 2018; Hoff
and Yu, 2019).

Pratt (1961) describes an elegant method for the construction of a confidence interval, with the desired coverage, that minimizes
a specified weighted average, over the parameter space, of the expected length of this interval. For the normal mean, with known
variance, Pratt (1961, 1963) constructs confidence intervals using this method that can be interpreted as ‘‘tail method’’ intervals
(Puza and O’Neill, 2006; Yu and Hoff, 2018).

The chief advantage of the ‘‘tail method’’ is that the coverage constraint is effortlessly satisfied. However, this advantage comes at
a price. In the situation under consideration, a highly-desirable property is that the scaled expected length of a confidence interval,
where the scaling is with respect to the expected length of the usual confidence interval with the same minimum coverage, has a
finite maximum value that is not too large. We do not want a small value of the scaled expected length in a specified part of the
parameter space to come at the cost of extremely large values in some other parts of this space. This is in line with the pioneering
work of Hodges and Lehmann (1952) who propose the minimization of a specified weighted average across the parameter space of
the risk function, subject to a given upper bound on its maximum value. Unfortunately, the ‘‘tail method’’ confidence interval for
the normal mean, with known variance, does not have this property and has a scaled expected length that has an infinite maximum
value. A numerical illustration of this fact is provided by panel (c) of Figure 1 of Yu and Hoff (2018).
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Yu and Hoff (2018) and Hoff and Yu (2019) made the novel and important observation that a ‘‘tail function’’ that is random
nd independent of the pivotal quantity for the parameter of interest still leads to a confidence interval with exactly the desired
overage. Yu and Hoff (2018) apply this observation to the construction of confidence intervals for the treatment means in a one-way
ayout that have relatively small expected length when these means are equal or close to equal. Individually, each of these confidence
ntervals has exactly the desired coverage. The methodology of Yu and Hoff (2018) applies to both balanced and unbalanced one-
ay layouts and both homogeneous and heterogeneous random error variances. Yu and Hoff (2018) explored the properties of the
xpected lengths of their confidence intervals using a semi-Bayesian analysis. We explore, for the first time, the properties of these
xpected lengths using a fully frequentist analysis.

Our aim is to explore the properties of the scaled expected lengths of these confidence intervals, where the scaling is with respect
o the expected length of the usual confidence interval with the same coverage. For conceptual and computational simplicity, we
onsider a balanced one-way layout, with identical random error variances across treatments in the simplified scenario that the
andom error variance is known. This is equivalent to assuming that the number of measurements of the response for each treatment
s large.

In Section 2 we describe the confidence intervals of Yu and Hoff (2018) in the context of a balanced one-way layout, with
dentical random error variances across treatments. In Section 3 we describe the form that these intervals take in the simplified
cenario that the random error variance is known. In Section 4 we present a convenient formula for the scaled expected length of
he (Yu and Hoff, 2018) confidence interval for a given treatment in this simplified scenario. The derivation of this formula is based
n the elegant results of Pratt (1963). This formula is used to derive Theorems 3 and 4, which are the main results of the paper,
hat describe important properties of this scaled expected length. This formula is also used to derive the computationally-convenient
xact formula for the scaled expected length, stated in Theorem 2, which we use to computationally explore the properties of the
caled expected length.

. Balanced one-way layout and homogeneous error variances: the confidence intervals of Yu and Hoff for treatment means

Consider a balanced one-way layout for the comparison of 𝑝 treatments. Suppose that for each treatment 𝑗, we have 𝑛 independent
and identically 𝑁(𝜃𝑗 , 𝜎2) responses denoted by 𝑌1𝑗 ,… , 𝑌𝑛𝑗 . The aim is to find confidence intervals, with specified coverage 1− 𝛼, for
each of the 𝜃𝑗 and the following expected length property. The expected lengths of these confidence intervals are relatively small
when 𝜃𝑖 are equal or close to equal and not too large otherwise. Let 𝑌 𝑗 =

∑𝑛
𝑖=1 𝑌𝑖𝑗

/

𝑛.
For the sake of concreteness, we focus on finding such a confidence interval for 𝜃1 using a pivotal quantity based on

(

𝑌 1, 𝑆2
1
)

,
where 𝑆2

1 =
∑𝑛
𝑖=1

(

𝑌𝑖1 − 𝑌 1
)2/(𝑛 − 1). Let 𝑡𝑎 denote the 𝑎th quantile of a 𝑡𝑛−1 distribution. The confidence interval of Yu and Hoff

(2018) for 𝜃1 is found as follows. We begin with the confidence interval

𝐶
(

𝑌 1, 𝑆
2
1 ;𝑤

)

=
{

𝜃 ∶ 𝑌 1 + 𝑛−1∕2 𝑆1 𝑡𝛼(1−𝑤(𝜃)) < 𝜃 < 𝑌 1 + 𝑛−1∕2 𝑆1 𝑡1−𝛼𝑤(𝜃)
}

(1)

or 𝜃1, with coverage 1 − 𝛼, where 𝑤 ∶ R → [0, 1] is a continuous nondecreasing function. This function, called a ‘‘tail function’’
y Puza and O’Neill (2006) and a ‘‘spending function’’ by Hoff and Yu (2019), is chosen using the following two-step procedure. In
he first step, the parameters 𝜇 and 𝜏2 determine a weight function. In the second step, these parameters determine prior distributions
hat are used in an empirical Bayes analysis. However, we will ultimately assess the resulting confidence interval for 𝜃1 using the
urely frequentist criteria of coverage probability and expected length.

tep 1: Let 𝜓 = (𝜇, 𝜏2, 𝜎2) and suppose that 𝜓 is given. Also let 𝜙(𝑥;𝜇, 𝜏2) denote the 𝑁(𝜇, 𝜏2) probability density function, evaluated
t 𝑥. Define 𝑤𝜓 to be the function 𝑤 that minimizes the following weighted average of the expected length of the confidence interval
(

𝑌 1, 𝑆2
1 ;𝑤

)

for 𝜃1:

∫ 𝐸𝜃1
(

length of 𝐶
(

𝑌 1, 𝑆
2
1 ;𝑤

)

)

𝜙(𝜃1;𝜇, 𝜏2) 𝑑𝜃1 (2)

with respect to the function 𝑤.

Step 2: We use a dash subscript (boldface hyphen subscript in the Supplementary Material) to denote an estimator based solely on
𝑌12,… , 𝑌𝑛2,… , 𝑌1𝑝,… , 𝑌𝑛𝑝. Let 𝜓̂− denote the empirical Bayes estimator of 𝜓 based solely on 𝑌12,… , 𝑌𝑛2,… , 𝑌1𝑝,… , 𝑌𝑛𝑝, assuming
that 𝜃2,… , 𝜃𝑝 have independent prior 𝑁(𝜇, 𝜏2) distributions. We then estimate the function 𝑤𝜓 by 𝑤𝜓̂− . The final confidence interval
for 𝜃1 is 𝐶

(

𝑌 1, 𝑆2
1 ;𝑤𝜓̂−

)

.
As pointed out by Yu and Hoff (2018), although in Step 2 we assume that 𝜃2,… , 𝜃𝑝 have prior distributions, this assumption is not

necessary for the exploration of the coverage probability and expected length properties of the confidence interval 𝐶
(

𝑌 1, 𝑆2
1 ;𝑤𝜓̂−

)

or 𝜃1. We can carry out this exploration in purely frequentist terms. The estimator 𝜓̂− found in Step 2 is independent of
(

𝑌 1, 𝑆2
1
)

.
By Proposition 7 of Yu and Hoff (2018), the confidence interval 𝐶

(

𝑌 1, 𝑆2
1 ;𝑤𝜓̂−

)

for 𝜃1 has coverage probability 1 − 𝛼.
To evaluate the expected length properties of this confidence interval is both conceptually and computationally difficult because

here is no simple formula for the function 𝑤𝜓 . To carry out this evaluation, we use the simplified scenario described in the next
ection.

. Balanced one-way layout and homogeneous error variances: the simplified scenario

To assess the expected length performance of a confidence interval, with coverage 1 − 𝛼, we use the scaled expected length,
efined to be (expected length of this confidence interval)/(expected length of the usual confidence interval with coverage 1−𝛼). To
2
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evaluate the scaled expected length of the (Yu and Hoff, 2018) confidence intervals, we introduce the following simplified scenario.
Suppose that 𝑛 is large, so that 𝑆1 estimates 𝜎 with great accuracy and 𝑡𝑎 is well-approximated by 𝑧𝑎, the 𝑎th quantile of the 𝑁(0, 1)
distribution. We expect the scaled expected length of the confidence interval 𝐶

(

𝑌 1, 𝑆2
1 ;𝑤𝜓̂−

)

for 𝜃1 to be well-approximated by the
caled expected length of the final confidence interval for 𝜃1 found in the following simplified scenario.

Suppose that 𝜎2 is known. The conceptual and computational advantage of this scenario is that the endpoints of the confidence
nterval resulting from the application of the analogues of Steps 1 and 2 (described in the previous section) are given by relatively
imple formulae. A further simplification results from the fact that we do not need to estimate 𝜎2. Therefore we can carry out an
nitial data reduction to 𝑌 1, 𝑌 2,… , 𝑌 𝑝.

To carry out the analogue of Step 1 (described in the previous section), we use the consequences of the results of Pratt (1963)
escribed in Section S1 of the Supplementary Material. Let 𝑅(𝑌 1) be a confidence interval for 𝜃1 with coverage 1 − 𝛼. For given 𝜇
nd 𝜏2, let 𝑅∗(𝑌 1) denote the confidence interval 𝑅(𝑌 1) that minimizes the following weighted average of the expected length of
(𝑌 1):

∫ 𝐸𝜃1 ,𝜎
(

length of 𝑅(𝑌 1)
)

𝜙(𝜃1;𝜇, 𝜏2) 𝑑𝜃1.

The confidence interval 𝑅∗(𝑌 1) has endpoints

𝜇 + 𝑛−1∕2𝜎 𝜃𝛼

(

𝑌 1 − 𝜇
𝑛−1∕2𝜎

, 𝜑

)

and 𝜇 + 𝑛−1∕2𝜎 𝜃̄𝛼

(

𝑌 1 − 𝜇
𝑛−1∕2𝜎

, 𝜑

)

, (3)

where 𝜑 = 𝑛 𝜏2∕𝜎2 and the functions 𝜃𝛼 and 𝜃̄𝛼 are defined in Appendix A.
Consider the ‘‘tail method’’ interval

𝐶
(

𝑌 1;𝑤
)

=
{

𝜃 ∶ 𝑌 1 + 𝑛−1∕2 𝜎 𝑧𝛼(1−𝑤(𝜃)) < 𝜃 < 𝑌 1 + 𝑛−1∕2 𝜎 𝑧1−𝛼𝑤(𝜃)
}

.

Let 𝜓 = (𝜇, 𝜑), where 𝜑 = 𝑛 𝜏2∕𝜎2. By Proposition 3 of Yu and Hoff (Yu and Hoff, 2018), 𝐶
(

𝑌 1;𝑤𝜓
)

= 𝑅∗(𝑌 1
)

when 𝑤𝜓 (𝜃) =
𝑔−1

(

2𝑛1∕2(𝜃 − 𝜇)∕(𝜎𝜑)
)

, where 𝑔(𝑥) = 𝛷−1(𝛼𝑥) − 𝛷−1(𝛼(1 − 𝑥)). In other words, the endpoints of the confidence interval 𝐶
(

𝑌 1;𝑤𝜓
)

for 𝜃1 are given by (3)
To carry out the analogue of Step 2 (described in the previous section) we first find an estimator 𝜓̂− = (𝜇−, 𝜑̂−) of 𝜓 = (𝜇, 𝜑),

ased on 𝑌 2,… , 𝑌 𝑝. For the purpose of deriving this estimator, assume that 𝜃2,… , 𝜃𝑝 have independent 𝑁(𝜇, 𝜏2) distributions. When
𝜏2 = 0, we interpret the 𝑁(𝜇, 𝜏2) probability density function, evaluated at 𝑥, as 𝛿(𝑥 − 𝜇), where 𝛿 denotes the Dirac delta function.
Considering their marginal distributions, 𝑌 2,… , 𝑌 𝑛 are independent and identically 𝑁(𝜇, 𝑣) distributed, where 𝑣 = 𝜎2(1 + 𝜑)∕𝑛.
Unbiased estimators of 𝜇 and 𝑣 are 𝜇− =

∑𝑝
𝑗=2 𝑌 𝑗

/

(𝑝 − 1) and 𝑣− =
∑𝑝
𝑗=2

(

𝑌 𝑗 − 𝜇−
)2/(𝑝 − 2), respectively. Since 𝜑 = (𝑛𝑣∕𝜎2) − 1 and

𝜑 ≥ 0, we estimate 𝜑 by 𝜑̂− = max
(

𝛥, (𝑛𝑣−∕𝜎2) − 1
)

, where 𝛥 is a given nonnegative number (usually chosen to be zero). Having
motivated the estimators 𝜇− and 𝑣−, we drop the assumption that 𝜃2,… , 𝜃𝑝 have a joint prior distribution.

We conclude that the confidence interval 𝐶
(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1, resulting from the application of the analogues of Steps 1 and 2,
has endpoints

𝜇− + 𝑛−1∕2𝜎 𝜃𝛼

(

𝑌 1 − 𝜇−
𝑛−1∕2𝜎

, 𝜑̂−

)

and 𝜇− + 𝑛−1∕2𝜎 𝜃̄𝛼

(

𝑌 1 − 𝜇−
𝑛−1∕2𝜎

, 𝜑̂−

)

. (4)

4. Scaled expected lengths of the Yu and Hoff confidence intervals: main results

We examine the scaled expected length properties of the Yu and Hoff confidence interval 𝐶
(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1, in the simplified
cenario described in Section 3. This scaled expected length is defined to be

𝐸𝜽,𝜎

(

length of 𝐶
(

𝑌 1;𝑤𝜓̂−
)

)

length of the usual 1 − 𝛼 confidence interval for 𝜃1
=
𝐸𝜽,𝜎

(

length of 𝐶
(

𝑌 1;𝑤𝜓̂−
)

)

2 𝑛−1∕2 𝜎 𝑧1−𝛼∕2
.

Let 𝛾𝑖 = 𝑛1∕2𝜃𝑖∕𝜎 (𝑖 = 1,… , 𝑝) and 𝛾− =
∑𝑝
𝑗=2 𝛾𝑗

/

(𝑝 − 1). Now let 𝜉 = 𝛾1 − 𝛾− and 𝜂 =
∑𝑝
𝑗=2(𝛾𝑗 − 𝛾−)

2. The parameter 𝜉 is a scaled
measure of the difference between 𝜃1 and the average of 𝜃2,… , 𝜃𝑝. The parameter 𝜂 is a scaled sample variance of 𝜃2,… , 𝜃𝑝. We will
show that the scaled expected length is a function of (𝜉, 𝜂).

Suppose that 𝜉 is fixed. When 𝜂 is large, we expect the confidence interval 𝐶
(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1 to be close to the usual confidence
interval for 𝜃1, with coverage 1−𝛼. Consequently, we anticipate that the scaled expected length of the confidence interval 𝐶

(

𝑌 1;𝑤𝜓̂−
)

will converge to 1 as 𝜂 → ∞. The first of our overall findings is that this scaled expected length does, indeed, converge to 1 as 𝜂 → ∞.
Now suppose that 𝜂 is fixed. The second of our overall findings is that the scaled expected length of the confidence interval

(

𝑌 1;𝑤𝜓̂−
)

diverges to ∞ as either 𝜉 → ∞ or 𝜉 → −∞. The source of this divergence seems to be traceable to the requirement,
nderlying the construction of the confidence interval 𝐶

(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1, that the random ‘‘tail function’’ must be independent of
he pivotal quantity for the parameter of interest 𝜃1.

A convenient formula for the scaled expected length of the confidence interval 𝐶
(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1 is given in the following
heorem, proved in Section S2 of the Supplementary Material.
3
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Theorem 1. Let 𝑈 and 𝑉𝜂 be independent random variables with 𝑈 ∼ 𝑁
(

0, 1+ (𝑝−1)−1
)

and 𝑉𝜂 having a noncentral 𝜒2 distribution with
− 2 degrees of freedom and noncentrality parameter 𝜂. Let 𝑑(𝑥, 𝜔2) = 𝜃̄𝛼

(

𝑥, 𝜔2) − 𝜃𝛼
(

𝑥, 𝜔2), where 𝜃̄𝛼
(

𝑥, 𝜔2) and 𝜃𝛼
(

𝑥, 𝜔2) are defined
n Appendix A. The scaled expected length of the confidence interval 𝐶

(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1 is equal to

1
2 𝑧1−𝛼∕2

𝐸
(

𝑑
(

𝜉 − 𝑈, max
(

𝛥,
𝑉𝜂
𝑝 − 2

− 1
)))

. (5)

This theorem shows that the scaled expected length of the confidence interval 𝐶
(

𝑌 1;𝑤𝜓̂−
)

for 𝜃1 is a function of (𝜉, 𝜂), which we
denote by SEL(𝜉, 𝜂). The condition (𝜉, 𝜂) = (0, 0) is equivalent to 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑝 i.e. the treatment means are equal. It may be shown
that SEL(𝜉, 𝜂) is an even function of 𝜉. Therefore, in determining the properties of SEL(𝜉, 𝜂) it is sufficient to consider (𝜉, 𝜂) ∈ [0,∞)2.

For any given (𝜉, 𝜂), SEL(𝜉, 𝜂) can be evaluated using (5) via Monte Carlo simulation. The evaluation of 𝑑(𝑥, 𝜔2) for any given
𝑥, 𝜔2) requires the evaluation of 𝜃𝛼

(

𝑥, 𝜔2) and 𝜃̄𝛼
(

𝑥, 𝜔2), which are found using a numerical root-finding algorithm. This numerical
oot-finding is enhanced through the use of the following lemma, proved in Section S2 of the Supplementary Material. This lemma
ill also be used later in the proofs of our main results Theorems 3 and 4.

emma 1. The following results hold for all 𝜔2 > 0.
a) If 𝑥 > 𝑧1−𝛼∕2 then 𝜃𝛼

(

𝑥, 𝜔2) ∈
[

(𝑥 − 𝑧1−𝛼∕2)
/

(1 + 2𝜔−2), 𝑥 − 𝑧1−𝛼∕2
]

.
(b) If 𝑥 = 𝑧1−𝛼∕2 then 𝜃𝛼

(

𝑥, 𝜔2) = 0.
c) If 𝑥 < 𝑧1−𝛼∕2 then 𝜃𝛼

(

𝑥, 𝜔2) ∈
[

𝑥 − 𝑧1−𝛼∕2, (𝑥 − 𝑧1−𝛼∕2)
/

(1 + 2𝜔−2)
]

.

To accurately compute SEL(𝜉, 𝜂) directly using (5) via numerical integration is problematic due to the lack of smoothness of
the max function. However, the max function can be removed by the appropriate decomposition of the integrals, resulting in the
following theorem, proved in Section S2 of the Supplementary Material, which provides a computationally-convenient exact formula
for SEL(𝜉, 𝜂).

Theorem 2. Let the random variables 𝑈 and 𝑉𝜂 and the function 𝑑(𝑥, 𝜔2) be as defined in the statement of Theorem 1. Then

SEL(𝜉, 𝜂) = 1
2 𝑧1−𝛼∕2

(

∫

∞

−∞
𝑑(𝜉 − 𝑢, 𝛥)𝑓𝑈 (𝑢) 𝑑𝑢 𝑃

(

𝑉𝜂 ≤ (1 + 𝛥)(𝑝 − 2)
)

+ ∫

∞

(1+𝛥)(𝑝−2) ∫

∞

−∞
𝑑
(

𝜉 − 𝑢, 𝑣
𝑝 − 2

− 1
)

𝑓𝑈 (𝑢) 𝑑𝑢 𝑓𝑉𝜂 (𝑣)𝑑𝑣

)

,

(6)

where 𝑓𝑈 and 𝑓𝑉𝜂 denote the probability density functions of 𝑈 and 𝑉𝜂 , respectively.

The following theorems, proved in Section S2 of the Supplementary Material, show that SEL(𝜉, 𝜂) is (a) poorly-behaved as either
𝜉 → ∞ or 𝜉 → −∞ and (b) well-behaved as 𝜂 → ∞.

Theorem 3. For every given 𝜂 and nonnegative 𝛥, SEL(𝜉, 𝜂) diverges to ∞ as either 𝜉 → ∞ or 𝜉 → −∞.

Theorem 4. For every given 𝜉 and nonnegative 𝛥, SEL(𝜉, 𝜂) → 1 as 𝜂 → ∞.

The contour plot shown in Fig. 1 is of SEL(𝜉, 𝜂) as a function of (𝜉, 𝜂) ∈ [0, 5] × [0, 30] for the case that 𝑝 = 5, 𝛼 = 0.05 and 𝛥 = 0.
The minimum value of SEL(𝜉, 𝜂) is 0.858, which is achieved at (𝜉, 𝜂) = (0, 0) i.e. when the treatment means are equal. This contour
plot was computed using the expression (6) for SEL(𝜉, 𝜂) and the methods of numerical integration described in Section S3 of the
Supplementary Material. This plot provides a numerical illustration of Theorems 3 and 4.

In addition, SEL(𝜉, 𝜂) was computed by simulation using (5), for several selected values of (𝜉, 𝜂) ∈ [0, 5]×[0, 30], for 𝑝 = 5, 𝛼 = 0.05
and 𝛥 = 0. Of course, the results computed in this way match (to within simulation sampling error) the results found by numerical
integration. All of the computations presented in this paper were carried out using R (R Core Team, 2024).

5. Discussion

We have considered a balanced one-way layout, with identical random error variances across treatments in the simplified scenario
that the random error variance is known. This is equivalent to assuming that the number of measurements of the response for each
treatment is large. We have shown that, irrespective of the number of treatments, the scaled expected lengths of the confidence
intervals of Yu and Hoff (2018) are functions of two scalar parameters 𝜉 and 𝜂. We note that 𝜂 is nonnegative and that the scaled
expected length is an even function of 𝜉. Our main results are that (a) for each fixed 𝜂, the scaled expected length diverges to infinity
as 𝜉 diverges to infinity and (b) for each fixed 𝜉, the scaled expected length converges to 1 as 𝜂 diverges to infinity. Property (a)
appears to be caused by the requirement that the ‘‘tail function’’ is random and independent of the pivotal quantity for the parameter
of interest. It is this requirement that leads to the coverage constraint being effortlessly satisfied. In other words, it appears that
effortless satisfaction of the coverage constraint comes at the price of property (a).

Our results also suggest that if the treatment population means are such that only one of these is an outlier then the (Yu and
Hoff, 2018) confidence interval for the outlying treatment population mean will have a very large expected length, while the (Yu
4

and Hoff, 2018) confidence intervals for the remaining treatment population means will be close to their usual confidence intervals
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Fig. 1. Contour plot of SEL(𝜉, 𝜂) as a function of (𝜉, 𝜂) ∈ [0, 5] × [0, 30], for the case that 𝑝 = 5, 𝛼 = 0.05 and 𝛥 = 0.

(with the desired coverage). Our results also suggest that if the treatment population means are such that at least two of these
are outliers then the (Yu and Hoff, 2018) confidence intervals will all be close to the usual confidence intervals (with the desired
coverage).

The simple computationally-convenient approximate confidence intervals described in Section 3.2 of Yu and Hoff (2018) do not
satisfy the requirement that the ‘‘tail function’’ is random and independent of the pivotal quantity for the parameter of interest.
This suggests that these approximate confidence intervals will have the attractive property that their scaled expected lengths are
bounded. As noted by Yu and Hoff (2018), these approximate confidence intervals have the desired coverage in the limit as the
number of treatments approaches infinity. It would be interesting to assess the speed of this convergence and the properties of the
scaled expected lengths of these confidence intervals. However, such an assessment is outside the scope of the present paper.

Data availability

No data was used for the research described in the article.

Appendix A. Some results of Pratt (1963)

In this appendix, we describe some results of Pratt (1963) and define 𝜃̄𝛼
(

𝑥, 𝜔2) and 𝜃𝛼
(

𝑥, 𝜔2). Suppose that 𝑋 ∼ 𝑁(𝜃, 𝜎2), where
𝜃 is unknown and 𝜎2 is known. Let 𝑅(𝑋) be a confidence interval for 𝜃 with coverage 1 − 𝛼. For given 𝜃0 and 𝜔2, let 𝑅∗(𝑋) denote
the confidence interval 𝑅(𝑋) that minimizes the following weighted average of the expected length of 𝑅(𝑋):

∫ 𝐸𝜃′
(

length of 𝑅(𝑋)
)

𝜙(𝜃′; 𝜃0, 𝜔2) 𝑑𝜃′, (7)

where 𝜙(𝑥; 𝜃0, 𝜔2) denotes the 𝑁(𝜃0, 𝜔2) probability density function, evaluated at 𝑥. When 𝜔2 = 0, we interpret the 𝑁(𝜃0, 𝜔2)
probability density function, evaluated at 𝑥, as 𝛿(𝑥 − 𝜃0), where 𝛿 denotes the Dirac delta function.

Suppose that 𝜔2 > 0. Let

𝑟
(

𝜃, 𝑥, 𝜔2) = 𝛷(𝑥 − 𝜃) −𝛷
(

(1 + 2𝜔−2) 𝜃 − 𝑥
)

.

This is a decreasing continuous function of 𝜃 that approaches 1 as 𝜃 → −∞ and approaches 0 as 𝜃 → ∞. Define 𝜃𝛼
(

𝑥, 𝜔2) as the
solution for 𝜃 of

𝑟
(

𝜃, 𝑥, 𝜔2) = 1 − 𝛼

and 𝜃̄
(

𝑥, 𝜔2) = −𝜃
(

−𝑥, 𝜔2). Also we define 𝜃 (𝑥, 0) = min
(

0, 𝑥 − 𝑧
)

and 𝜃̄ (𝑥, 0) = max
(

0, 𝑥 + 𝑧
)

.

5

𝛼 𝛼 𝛼 1−𝛼 𝛼 1−𝛼
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The confidence interval 𝑅∗(𝑋) has endpoints

𝜃0 + 𝜎 𝜃𝛼

(

𝑋 − 𝜃0
𝜎

, 𝜔
2

𝜎2

)

and 𝜃0 + 𝜎 𝜃̄𝛼

(

𝑋 − 𝜃0
𝜎

, 𝜔
2

𝜎2

)

. (8)

For the particular case that 𝜃0 = 0, 𝜎2 = 1 and 𝜔2 = 0, this is the confidence interval of Pratt (1961, Section 5).

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2024.110170.
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