Chemical and resistance exponents for 4D simple random walk

Daisuke Shiraishi (Kyoto University)

Consider a simple random walk $S = (S_n)_{n\geq 0}$ on \mathbb{Z}^d started at the origin. Regard S[0,n] as a random graph whose vertex set and edge set are given by $\{S_k \mid 0 \leq k \leq n\}$ and $\{\{S_k, S_{k+1}\} \mid 0 \leq k \leq n-1\}$.

In [1], the following three quantities are studied:

- D_n = the graph (chemical) distance between the origin and S_n on S[0, n],
- R_n = the effective resistance between the origin and S_n on S[0, n],
- L_n = the length (the number of steps) of the loop-erasure of S[0, n].

In contrast to substantial progress in L_n not only for d = 2 but also for d = 3 ([3], [4]), much less is known about D_n and R_n for both d = 2 and d = 3.

What about the four-dimensional case? (For d = 1 and $d \ge 5$, the problem is much simpler.) It is shown in [2] that $\mathbb{E}(L_n)$ is asymptotic to $cn(\log n)^{-\frac{1}{3}}$. In this talk, I will show that there exist constants $c_1, c_2 > 0$ such that

$$\lim_{n \to \infty} \frac{\mathbb{E}(D_n)}{c_1 n (\log n)^{-\frac{1}{2}}} = 1 \text{ and } \lim_{n \to \infty} \frac{\mathbb{E}(R_n)}{c_2 n (\log n)^{-\frac{1}{2}}} = 1.$$

(The exact values of c_1 and c_2 are not computed. Even $c_1 \neq c_2$ is not proven!)

After establishing a law of large numbers for D_n and R_n , I will also present some fluctuation results for $D_n - \mathbb{E}(D_n)$ and $R_n - \mathbb{E}(R_n)$. These results will be useful for research on random interlacements and random walks on $S[0, \infty)$ in four dimensions.

References

- K. Burdzy and G. Lawler. Rigorous exponent inequalities for random walks. J. Phys. A: Math. Gen. 23, L23. 1990.
- [2] G. Lawler, X. Sun and W. Wu. Four-dimensional loop-erased random walk. Ann. Probab. 47(6), 3866-3910. 2019.
- [3] X. Li and D. Shiraishi. Convergence of three-dimensional loop-erased random walk in the natural parametrization. *Probab. Theory Related Fields*, **191(1)**, 421-521. 2025.
- [4] D. Shiraishi. Growth exponent for loop-erased random walk in three dimensions. Ann. Probab. 46, 687-774. 2018.