A local sign decomposition for symplectic self-dual Galois representations
代数学セミナー
開催期間
2024.12.3(火)
16:00 ~ 17:00
16:00 ~ 17:00
場所
C-513 中講義室および Zoomミーティング
講演者
中村 健太郎 (九州大学)
概要
講演概要:Around 1987, Rubin envisioned a signed Iwasawa theory for CM elliptic curves at supersingular primes $p$ over the anticyclotomic $ \mathbb{Z}_p $-extension of the CM field, conjectural on a fundamental sign decomposition of the local
Iwasawa cohomology. This conjecture was resolved by A. Burungale, K. Ota and S. Kobayashi in 2021. We generalize
this decomposition to arbitrary families of two dimensional symplectic self dual Galois representations of $\mathbb{Q}_p$ using
Kato’s local epsilon conjecture, which was resolved by the speaker. This is a joint work (in progress) with
A. Burungale, K. Ota, and S. Kobayashi.