Upper bounds for virtual dimensions of Seiberg--Witten moduli spaces
トポロジー金曜セミナー
開催期間
2023.4.14(金)
16:00 ~ 17:00
16:00 ~ 17:00
場所
IMIオーディトリアムとZoomのハイブリッド
講演者
中村 信裕 (福島県立医科大学)
概要
In this talk, we explain that the virtual dimension $d$ of the Seiberg--Witten moduli space satisfies $d\leq 2r(p-1)-2$ if the Seiberg--Witten invariant is not divisible by $p^r$ and some topological conditions are satisfied. For the proof, we employ Buaer--Furuta's cohomotopy refinement of the Seiberg--Witten invariant. By using techniques in hard homotopy theory such as Toda brackets, the divisibility of the Seiberg--Witten invariant is deduced. This talk is based on a joint work with Tsuyoshi Kato, Daisuke Kishimoto and Kouichi Yasui.