Bourgin-Yang type theorem for $Z_{p^k}$-equivariant maps
トポロジー金曜セミナー
開催期間
2014.1.17(金)
16:00 ~ 17:30
16:00 ~ 17:30
場所
九州大学 伊都キャンパス 伊都図書館3F*中セミナー室1*(入口は数理棟3F)
講演者
Denise de Mattos (Institute of Mathematics and Computer Sciences, Univ. of Sao Paulo)
概要
Let $G=Z_{p^k}$ be a cyclic group of prime power order and let $V$ and $W$ be orthogonal representations of $G$ with $V^{G}= W^{G}=¥{0¥}$. Let $S(V)$ be the sphere of $V$ and suppose $f:S(V)¥to W$ is a $G$-equivariant mapping. In this seminar, we will consider the problem to estimate the dimension of the set $f^{-1}¥{0¥}$ in terms of $V$ and $W$. This is an extension of the Bourgin-Yang theorem to this class of groups.
Joint work with Waclaw Marzantowicz and Edivaldo L. dos Santos