Big Galois representations and p-adic L-functions
代数学セミナー
開催期間
2011.7.22(金)
16:00 ~ 17:30
16:00 ~ 17:30
場所
伊都キャンパス 伊都図書館3階 小講義室 2
講演者
肥田 晴三 (UCLA)
概要
Let $p\ge5$ be a prime. If an irreducible component of the spectrum
of the `big' ordinary Hecke algebra does not have complex
multiplication, under mild assumptions, we prove that the image of its
Galois representation contains, up to finite error, a principal
congruence subgroup $\Gamma(L)$ of $SL_2(\Zp[[T]])$ for a
principal ideal $(L)\ne0$ of $\Zp[[T]]$
for the canonical ``weight'' variable $T$. If nontrivial (i.e.,
$L\ne1$), the power series $L$ is proven to be a factor of the
Kubota-Leopoldt $p$-adic $L$-function or of the square of the
anticyclotomic Katz $p$-adic $L$-function
(or a power of of $(1+T)^{p^m}-1)$).