Relations between discriminants and resultants, their generalizations and categorification.
代数幾何学セミナー
開催期間
2014.10.2(木)
16:00 ~ 17:00
16:00 ~ 17:00
場所
九州大学 伊都キャンパス 数理学研究教育棟3階 大講義室3
講演者
Mikhail Kapranov (東京大学 国際高等研究所 カブリ数物連携宇宙研究機構)
概要
The classical resultant $R(f,g)$ of two polynomials $f,g$ in one variable has many analogs in other areas of mathematics: the integral of product of first Chern classes, Legendre symbols, linking numbers and others. On the other hand, the classical discriminant $D(f)$ of a polynomial $f$ satisfies the "coboundary" condition $R(f,g)^2 = D(fg)/(D(f) D(g))$. The talk will explain known and conjectural analogs of the discriminant and of the coboundary condition in other contexts where the analogs of the resultant make sense.