Global solution to the Boltzmann equation without cutoff on the whole space in $(L^1\cap L^p)_k$
開催期間
15:30 ~ 17:00
場所
講演者
概要
We consider a Cauchy problem of the Boltzmann equation without angular cutoff near the global Maxwellian. When a spatial domain is the torus, it is proved that the problem has a unique solution for small data in the Wiener space, the collection of functions whose Fourier coefficients are absolutely summable. Due to its Banach-algebra property, we do not need the Sobolev embedding in this space. Following this result, we consider the problem on the whole space. In this case, the control of the $L^1$ norm on the Fourier side is not sufficient due to low-frequency terms. Therefore, inspired by Kawashima-Nishibata-Nishikawa's work on the viscous conservation laws, we employ the $L^p$ norm estimates with respect to the frequency to control such parts. This $L^1 \cap L^p$ strategy will close a priori estimates when combined with a time-weighted energy method. This work is based on a joint work with Renjun Duan (Chinese University of Hong Kong) and Yoshihiro Ueda (Kobe University).
※ 最新の講演題目・要旨等の情報につきましてはホームページ
http://www2.math.kyushu-u.ac.jp/FE-Seminar/
をご覧下さい.
Zoomの使い方等について:
・ご参加して頂く際には,Zoomのアプリのインストールが必要です.
下記のwebサイトから,事前に導入をお願い致します.
https://zoom.us ・改めてご連絡する招待リンクをクリックすることで参加できます.
・セキュリティ面を考慮し,本名(フルネーム)でご参加頂けると幸いです.