第9回 論理と計算セミナー
開催期間
13:00 ~ 18:00
場所
講演者
概要
共催:九州大学数理学府グローバルCOEプログラム「マス・フォア・インダストリ教育研究拠点」
講演予定:
13:00- Reynald Affeldt(産総研)
Instrumenting Error-correcting Codes with SSReflect
14:00- 宗政昭弘(東北大学)
Super Catalan numbers and Krawtchouk polynomials
15:00- 赤間陽二(東北大学)
Set systems: Order types, continuous nondeterministic deformations, and quasi-orders
16:00- 若林徳子(九産大)
Double shuffle and Hoffman's relations for multiple L-star values
17:00- 篠原直行(情報通信研究機構 ネットワークセキュリティ研究所)
Primality proving and Grantham's problem
アブストラクト:
Reynald Affeldt(産総研)
「Instrumenting Error-correcting Codes with SSReflect」
Our motivation is to provide in the Coq proof-assistant formal
definitions and lemmas about error-correcting codes. The resulting
toolkit could enable, for example, formal verification of
implementations of cryptographic schemes based on error-correcting
codes. For that purpose, we use the SSReflect library, that provides
an integrated formalization of matrices and polynomials. As a
technical introduction to formal verification in the Coq
proof-assistant, we report on the formalization of basic
properties of error-correcting codes and probabilities.
宗政昭弘(東北大学)
「Super Catalan numbers and Krawtchouk polynomials」
In 1992, Ira Gessel defined super Catalan number \(S(m,n)\) as
\[
S(m,n) = \frac{(2m)!(2n)!}{m!n!(m+n)!},
\]
where \(m,n\) are positive integers, and showed
that \(S(m,n)\) is an integer.
In this talk, we point out an interpretation of
\(S(m,n)\) as a special value of a
Krawtchouk polynomial \(K_j^d(x)\).
Krawtchouk polynomials appear as the coefficients of the so-called
MacWilliams identities, and
also as the eigenvalues of the distance-\(j\) graph of the \(d\)-dimensional
cube. Our interpretation shows that
\(\{(-1)^mS(m,n)\mid m,n\geq0,\;m+n=j\}\) coincides with
the set of non-zero eigenvalues of the distance-\(j\) graph of the
\(2j\)-dimensional cube.
This is joint work with Evangelos Georgiadis and Hajime Tanaka.
赤間陽二(東北大学)
「Set systems: Order types, continuous nondeterministic deformations, and
quasi-orders」
By reformulating a learning process of a set system L as a game between
Teacher and Learner, we define the order type of L to be the order type of
the game tree, if the tree is well-founded. The features of the order type
of L (dim L in symbol) are (1) we can represent any well-quasi-order (wqo
for short) by the set system L of the upper-closed sets of the wqo such that
the maximal order type of the wqo is equal to dim L; (2) dim L is an upper
bound of the mind-change complexity of L. dim L is defined iff L has a
finite elasticity (fe for short), where, according to computational learning
theory, if an indexed family of recursive languages has fe then it is
learnable by an algorithm from positive data. Regarding set systems as
subspaces of Cantor spaces, we prove that fe of set systems is preserved by
any continuous function which is monotone with respect to the set-inclusion.
By it, we prove that finite elasticity is preserved by various
(nondeterministic) language operators (Kleene-closure, shuffle-closure,
union, product, intersection, …). The monotone continuous functions
represent nondeterministic computations. If a monotone continuous function
has a computation tree with each node followed by at most n immediate
successors and the order type of a set system L is α, then the direct image
of L is a set system of order type at most n-adic diagonal Ramsey number of
α. Furthermore, we provide an order-type-preserving contravariant embedding
from the category of quasi-orders and finitely branching simulations between
them, into the complete category of subspaces of Cantor spaces and monotone
continuous functions having Girard’s linearity between them.(To appear in
Theoretical Computer Science doi:10.1016/j.tcs.2011.08.010 )
若林徳子(九州産業大学)
「Double shuffle and Hoffman's relations for multiple L-star values」
多重ゼータ値とは,リーマンゼータ関数の特殊値のある種の一般化である.
荒川-金子は,ディリクレ指標を用いた多重ゼータ値の一般化として多重$L$値を定義した.
荒川-金子によって多重$L$値の代数的定式化が導入され,
一般複シャッフル関係式やホフマンの関係式の一般化である導分関係式が示された.
本講演では,多重$L$値の線形和で定義される等号付き多重$L$値の代数的定式化を考え,
一般複シャッフル関係式とホフマンの関係式に相当するものの導出を試みる.
篠原直行(情報通信研究機構 ネットワークセキュリティ研究所)
「Primality proving and Grantham's problem」
There are two kinds of algorithms to determine the primality of a given
integer. The one is a primality test which is efficient but probabilistic,
namely, it rarely makes a wrong answer. Another is a primality proving
that always gives a correct answer, but it is not so efficient.
In this talk, we consider to construct an efficient primality proving
by improving Quadratic Frobenius primality test. In order to achieve our
aim, we discuss Grantham's Problem.
リンク
セミナーHP