Energy decay for a nonlinear Generalized Klein-Gordon equation in exterior domains with a localized nonlinear dissipative term
関数方程式セミナー
開催期間
2009.12.11(金)
15:30 ~ 17:00
15:30 ~ 17:00
場所
福岡大学・セミナーハウス・2階セミナー室D
講演者
中尾 愼宏 (九州大学・名誉教授)
概要
We give a certain energy decay rate for solutions
of the exterior initial-boundary value problem of
the nonlinear wave equations. We call our equation
as a nonlinear generalized Klein-Gordon equation
since the term $g(u)$ plays an essential role in
our argument. Note that concerning energy decay,
no result is known when both of $\rho(x,u_t)$ and
$g(u)$ are nonlinear.